
IEOR 222 Final Project - Q Learning for Optimal Trade Execution

Santhosh Subramanian

Abstract— Optimal Order Execution has been a problem in
many decades in financial institutions. In class, we learned
about couple of ways to tackle this issue. Mainly, we focused
on the model provided by Bertsimas and Lo. The goal of the
project is to use Q Learning to get the optimal order execution
strategy under various price impact models.

I. INTRODUCTION

Optimal Order Execution has been a problem for nearly
decades. Say we need to buy or sell a certain amount of
shares by a certain time period. If we buy too many shares
at once, the stock might rise, and we are negatively impacted
by the increasing buying price. If we buy too little shares,
then we have to liquidate majority of our shares towards
the end of the interval, or we won’t finish the job The goal
of the project is to use reinforcement learning, specifically
Q learning, in order to learn the optimal execution strategy.
After learning about Bertsimas & Lo, we know that given
the linear permanent price impact (1), the optimal execution
strategy is to buy equal amount of shares in each time interval
from the first to the last interval.

(1) Pt+1 = Pt + ε− Stθ

In the linear permanent price impact model, Pt is the price
of the security at time t, ε is a zero-mean independently and
identically distributed (IID) white noise, St is the number of
shares sold at time t, and θ is an impact premium.
The second model I used was the quadratic temporary model
which has a formula of:

(2) Pt+1 = Pt + ε− (a(St)
2 + bSt)

In the quadratic temporary impact model, Pt is the price of
the security at time t, ε is zero-mean noise, and (a(St)

2+bSt)
is the impact premium in quadratic form. The last model I
used was the linear transient model. Which I will talk more
about in depth in the later parts of the paper.

II. PROCEDURE

A. Defining Helper Functions

The first thing I did was develop helper functions. These
functions were used for synthetic price generation, generat-
ing actions from a certain state, and reward functions for
each of the three models I chose to work with.

B. Reward Functions

The reward function was straight forward. In order to
generate the rewards for taking an action from a certain space
state, I would generate the new price from taking that action
and multiply that by the number of shares that the trader is
going to by the state.

Rt = St × Pt+1

Here Rt is the reward generated at time t, St is the shares
that are bought at time t, and Pt+1 is the price that would
be generated by the impact of those shares sold. I also wrote
helper functions that implemented each of the three impact
models talked about in the equation above.

III. ALGORITHM

Algorithm 1: Q Learning Model
Initialize Q Table
begin
α = 0.1;
ε = 1;
for i in episodes do

P0 = 100;
St = total shares in inventory;
for t in time interval do

current state = (t, Pt, St);
if current state not in Q Table then

Add current state to Q Table
end if
if t is not the last time interval then

if random value < ε then
shares buying = action ≤ St;

end if
else

shares buying = max(current state
in Q Table);

end if
end if
else

shares buying = St
end if
Rt = Reward from buying St;
Pt+1 = Price change due to St;
FQ = max(Q val of future state generated

by current action);
Qval = (1− α)(Current State Q Value) -
α(Rt + FQ);

Update Q Table;
Update Total Inventory

end for
end for

end



A. Algorithm Notes

Above I wrote pseudocode of how my algorithm works
for the three models. Even though the actual algorithm isn’t
the same for each model as it shouldn’t be due to different
price impacts and if the model is temporary or permanent,
this is the skeleton of the code. For different models, I would
change some code and add some code. For instance, for the
linear transient, I added an array that tracked all the shares
bought in every time period, and an array that contained
all the noises. The algorithm was also an epsilon greedy
approach where epsilon would decrease as the iterations
increased so that the algorithm would move from exploration
to exploitation. My ε started at 1 and after every episode, I
would reduce epsilon by 0.00001. I did this so to help my
algorithm converge faster. Secondly, my γ when generating
q values was 1. Lastly, my learning rate, α was the industry
standard at 0.1.

B. Algorithm Explanation

• Initial Steps: I initialized a Q table which was blank
data frame that I would add actions and state spaces as
the algorithm runs. I also initialized the values for ε, α,
and γ.

• Generating Actions: First we would iterate through the
time intervals. At each time interval we first recorded
the current state. If it was in the Q table, we would
move on. Otherwise, we would add the current state
into the Q table and initialize all the actions for the
current state to have a Q value of 0. Next, we would
generate a random float between 0 and 1, if it was lower
than epsilon, we would pick a random action that is
valid (the action must be lower than the total shares
inventory). For instance, if the action says to sell 1000
shares, but we only have 500 shares to sell, this action
would be invalid, and a new action would be selected. If
the random float between 0 and 1 is greater than epsilon,
we would pick the maximum Q value for the current
state that is a valid action. If we are in the last time
interval, the amount of shares we sell is the amount of
shares left in the inventory.

• Generating Rewards and Q Values: Now, we are
generating rewards. Based on the current price and the
number of shares we are buying, we generate rewards by
using the equation in the procedure section. Then after
getting the rewards for taking that particular action, we
can find the updated Q value for that current state. First,
we log the present Q value for the current state. We then
we need to find the max Q value for the future state that
is generated by the action we are taking in the current
state. To do this, we generate the new state space and
then find the highest Q value in the q table for that new
state space. We then can find the updated Q value by
using the equation provided in the pseudo-algorithm.

• Updating and Final Steps: After getting the updated Q
value, we then updated our Q table and total inventory.
Once this step is finished, we then move on to the next

time step. Once, we finish all the steps, we move on to
the next episode/iteration.

C. Linear Transient Model
In this section, we will go more in depth about the linear

transient model that I built. At first I was using the equation
that was given in office hours, this equation was:

Pt = P0 +
∑t
i εi +

∑t
i[e

−α(t−i)θSi]

In the equation above, the P0 is the initial price that I
generated, the second part is the sum of all the noises till
time t that have been generated, and then the last part is a
sum of all the shares till time tmultiplied by a decay kernel.
In this case → eα(t−i). For the equation above, I used an
initial price of 100, an α of 0.25, and a θ of 0.05.

I also used another transient price impact model with
another decay kernel. Instead of e−α(t−i) as my decay
kernel, I used 1

1+(t−i)2 . This was found in Gatheral’s paper:
Dynamical models of market impact and algorithms for order
execution.

IV. RESULTS

A. Linear Permanent Model
For the linear permanent model, we see an optimal strategy

of buying evenly down the middle. I tested this by selling
600 shares in 6 intervals. The θ I chose was 0.05. My noise
was generated by a random choice function in numpy that
had 0 mean. The highest reward for time 1 was selling 100
shares, time 2 selling 100 shares, time 3 selling 100 shares,
and so on and so forth. The optimal strategy is S

T where S is
the total number of shares to be liquidated, and T is in how
many intervals you need to do so. This matches Bertsimas &
Lo’s strategy outlined in their paper. Further for this model,
we had 10,000 episode.

Fig. 1. Filtered State Space

If you take a look at the state space here, for every state
space, we see that the action with the highest reward is 100.
This model also worked at n = 6 and S = 600.

Fig. 2. Convergence of Expected Rewards



Though it is hard to see this graph shows the convergence
of the expected reward for state 1. We see that as the
iterations go by that at state 1 with 1000 shares remaining,
the state converges to taking action where we buy 100 shares.
This is shown as the action 100 at state 1 has the highest
expected reward.

B. Quadratic Temporary Model

For the quadratic temporary model, we also see an optimal
strategy of buying evenly down the middle. The optimal
strategy is S

T where S is the total number of shares to be
liquidated, and T is in how many intervals you need to do
so.

Fig. 3. Q Learning Graph in the process

Here is a graph different from the one above. This graph
(from the quadratic temporary) I chose as we can see how
the network learns to pick up rewards over time. We see that
as the episodes increase that the Q learning network keeps
finding the path the higher and higher reward. This graph has
not converged yet, but as the network runs more episodes the
graph will start to look like the one above.

C. Linear Transient Models

For the linear transient model, I chose θ to be 0.05 and α
as 0.25. In my algorithm, I chose to sell 120 shares in 5 time
intervals. The different episodes I used were 10000, 20000,
30000, 50000, and 75000. The first four number of episodes
I chose did not give me the right optimal strategy; however,
after increasing the number of episodes. I finally reached
the optimal strategy of 30, 20, 20, 20, 30. This is equivalent
to Gatheral’s conclusions in his paper. The optimal trading
strategy here is a convex strategy where we buy a block at
time 0 and time t, and then buy smaller equivalent shares in
the middle.

Fig. 4. Condensed State Space

Here we see the most optimal path is selling 30, selling 20,
selling 20 again, selling 20, and finally liquidating the last
30 shares. We can see that as for every state, the expected
rewards for these actions is the highest.

Fig. 5. State 1 Convergence

Here we see the convergence graph of the first state. It
takes around 40,0000 steps to finally converge and give
me the right optimal strategy. We see that at state 1, it
converges to action 3 with an expected reward of just above
8000. Before, we were getting suboptimal strategies as the
states were not converging by the steps given (10000, 20000,
30000, 50000). This optimal strategy found in this solution
is almost exactly what Gatheral’s solution was.

V. CONCLUSIONS

For this project, we see how the optimal trading strategy
changes depending on the given model. The linear permanent
model’s optimal strategy is to buy the same amount of shares
until the end of the liquidation period. This strategy produced
by my reinforcement algorithm makes complete sense as we
end up with the same strategy that Bertsimas and Lo come
up with. The quadratic model’s optimal strategy was to buy
even amount of shares. Though I don’t know if this is correct,
I believe this makes complete sense. The linear price impact
model is Pt+1 = Pt + ε − Stθ and the quadratic impact
model is Pt+1 = Pt + ε − (a(St)

2 + bSt). I believe the
quadratic impact model could have an optimal strategy that
is equivalent to the linear price impact model as there is an
α, β, and θ where a(St)2 + bSt = θSt. Lastly, the transient
model gave us nice results. Using the approach Gatheral took
and the equation Nan gave us, we were able to produce the
results that Gatheral produced. We were able to produce the
optimal strategy which was convex in nature.


